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ABSTRACT
The emergence of fast-spreading SARS-Cov-2 mutants has sparked a 
new phase of COviD-19 pandemic. There is a dire necessity for anti-
virals targeting highly conserved genomic domains on SARS-Cov-2 
that are less prone to mutation. The nsp12, also known as the 
RNA-dependent RNA-polymerase (RdRp), the core component of 
‘SARS-Cov-2 replication-transcription complex’, is a potential 
well-conserved druggable antiviral target. Several FDA-approved RdRp 
‘nucleotide analog inhibitors (NAis)’ such as remdesivir, have been 
repurposed to treat COviD-19 infections. The NAis target RdRp protein 
translation and competitively block the nucleotide insertion into the 
RNA chain, resulting in the inhibition of viral replication. However, 
the replication proofreading function of nsp14-ExoN could provide 
resistance to SARS-Cov-2 against many NAis. Conversely, the 
‘non-nucleoside analog inhibitors (NNAis)’ bind to allosteric sites on 
viral polymerase surface, change the redox state; thereby, exert anti-
viral activity by altering interactions between the enzyme substrate 
and active core catalytic site of the RdRp. NNAis neither require 
metabolic activation (unlike NAis) nor compete with intracellular pool 
of nucleotide triphosphates (NTPs) for anti-RdRp activity. The NNAis 
from phytonutrient origin are potential antiviral candidates compared 
to their synthetic counterparts. Several in-silico studies reported the 
antiviral spectrum of natural phytonutrient-NNAis such as Suramin, 
Silibinin (flavonolignan), Theaflavin (tea polyphenol), Baicalein 
(5,6,7-trihydroxyflavone), Corilagin (gallotannin), Hesperidin (citrus bio-
flavonoid), Lycorine (pyrrolidine alkaloid), with superior redox charac-
teristics (free binding energy, hydrogen-bonds, etc.) than antiviral 
drugs (i.e. remdesivir, favipiravir). These phytonutrient-NNAis also exert 
anti-inflammatory, antioxidant, immunomodulatory and cardioprotec-
tive functions, with multifunctional therapeutic benefits in the clinical 
management of COviD-19.
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Introduction

‘Mutation is the driving force of evolution’ – it is the variation upon which natural 
selection builds its biological diversity during evolution (1). RNA viruses have high 
mutation rates—up to a million-fold higher than their hosts—such extreme genetic 
rearrangement correlates with enhanced adaptability and virulence, a trait considered 
beneficial for the virus (2). Coronaviruses (CoVs) are potential cross-species pathogens 
with unique ability to mutate, adapt, transmit into new host species, and cause severe 
clinical outcomes as witnessed during the Severe Acute Respiratory Syndrome (SARS) 
in 2002, the Middle East Respiratory Syndrome (MERS) in 2012, and the ongoing 
Coronavirus Disease 2019 (COVID-19), a challenge to global health (3, 4). The 
SARS-CoV and MERS-CoV were also appeared as epidemics in China, South Korea 
and United Arab Emirates which were emerged by CoVs specifically alpha- and 
beta-coronaviruses (5). The life cycle of CoVs consists of four steps. In the first step 
the spike (S) protein mediated cellular fusion occurs following its interaction with 
dipeptidyl peptidase 4 (DPP4). In next stages the replicase enzyme is expressed which 
helps in the replication and then the transcription and finally the release of new virions 
(6). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent 
for COVID-19, is a single-stranded positive-sense RNA virus. Its life cycle is charac-
terized by short replication times with high viral yields. In general, the CoV replication 
machinery is highly error-prone without correction systems; therefore, these viruses 
are prone to several genetic alterations during an infectious life cycle (7). Accordingly, 
CoVs evolve at a rapid pace, pose high risk of zoonotic transmission, and frequently 
develop resistance to therapeutics as well as evade vaccine-induced immunity (2, 8). 
This genomic advantage makes the SARS-CoV-2 pathogen a major challenge to develop 
antiviral strategies and control COVID-19. Due to this genomic advantage, SARS-CoV-2 
is considered a challenge for developing any effective antiviral strategies.

Emergence of SAR-CoV-2 variants: The emergence of fast-spreading SARS-CoV-2 
mutants has sparked a new phase of COVID-19 pandemic (9). Prevalence of SARS-CoV-2 
variants have an evolutionary advantage over their ancestral (wild) type strains with 
could pose a major threat to global health (10). Clinical consequences may include: i) 
rapid viral transmission, ii) increased disease severity with high mortality rates, iii) 
escape detection by current diagnostic tests, iv) decreased susceptibility or resistance to 
antiviral drugs, and v) evasion of natural or vaccine-induced immunity. Among these 
risk factors, the ability of SARS-CoV-2 to evade vaccine-induced immunity—is an extreme 
concern; since a large population has been vaccinated and the herd immune pressure 
may drive genomic adaptation to evolve novel viral variants as ‘escape’ mutants. Such 
genetic drift in tandem with the evasion of immune recognition, certain sub-strains 
with different mutations could compromise effectiveness of vaccines against 
COVID-19 (11).

Based on epidemiological update by the WHO, five SARS-CoV-2 variants – 
Alpha-(B.1.1.7); Beta-(B.1.351); Gamma-(P.1) Delta-(B.1.617.2), and Mu-(B.1.621) have 
been identified since the beginning of the pandemic, all with mutations in the spike 
(S) protein (12, 13). The S-protein has been the most preferred target for COVID-19 
vaccine development. However, emergence of variants with mutations in S-protein may 
disrupt several vaccine development protocols. Unfortunately, there is no effective 
‘multivalent vaccine’ yet that could provide immune protection against multiple 
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SARS-CoV-2 variants. This global scenario highlights the dire necessity for identifica-
tion and characterization of specific and potent antivirals that target highly conserved 
domains, which are less likely to mutate in the SARS-CoV-2 genome (14). Two specific 
enzymes of SARS-CoV-2 replication cycle: the main protease (MPro) during proteolytic 
activation, and the RNA-dependent RNA polymerase (RdRp) during transcription are 
considered as potential conserved druggable antiviral targets (15).

Conserved viral replicase enzymes as druggable targets: The RdRp activity in viral 
transcription and replication has been recognized as an attractive target to develop 
antiviral strategies against COVID-19 (16, 17). SARS-CoV-2 shares less genetic simi-
larity with SARS-CoV (∼79%) and MERS-CoV (∼50%); however, the respective RdRps 
of these CoVs are highly conserved, suggesting that RdRp is a robust antiviral target 
for COVID-19 control (18, 19). Since RdRp is a viral enzyme without any host protein 
homologs, specific SARS-CoV-2 RdRp inhibitors with high potency and fewer side 
effects could be developed for COVID-19 management (20)

Several FDA-approved RdRp nucleotide analog inhibitors (NAIs) with established 
track record to treat RNA viral pathogens have been repurposed, which are currently 
undergoing stringent tests for safety/efficacy in the treatment of COVID-19 infec-
tions (21). Furthermore, high through-put screenings and in-silico studies are elu-
cidating the anti-RdRp activity of several FDA-approved non-nucleotide inhibitor 
(NNAI) drugs (16). Unfortunately, the first open label, randomized, controlled trials 
with popular repurposed NAI drugs (i.e. remdesivir, favipiravir, lopinavir-ritonavir, 
ribavirin, sofosbuvir, etc.) showed poor efficacy against SARS-CoV-2 infections (22).

Given the high morbidity and mortality of COVID-19 pandemic and lack of effective 
antiviral drugs, the repurposing of traditional antiviral phyto-therapeutics and natural 
bioactives is a promising strategy (5). Large-scale phenotypic screening of natural com-
pound libraries could isolate potential RdRp inhibitors through molecular docking and 
molecular dynamic simulations, in-silico ADMET (i.e. absorption, distribution, metabo-
lism, excretion, and toxicity) and drug-likeness prediction analyses. Effective phytonutrient 
inhibitors could be identified and compared with antiviral prescription drugs (i.e. rem-
desivir), based on specific interactions of their ligand structures with core catalytic 
domains of SARS-CoV-2 RdRp. This review is aimed at collating data on potential role 
of such natural bioactive compounds derived from medicinal herbs and phytonutrient 
extracts in blocking the SARS-CoV-2 RdRp enzyme activity and inhibit the viral repli-
cation cycle. This information may help guide the discovery process to formulate antiviral 
interventions from potential natural plant-based bioactives for COVID-19 control.

Genomic organization of SARS-CoV-2 replication machinery

The 30-kb genome of SARS-CoV-2 consists of 14 open reading frames (ORFs) that 
encode at least 27 proteins (23, 24). The ORF1ab region at the 5′ end transcribes a 
polyprotein that cleaves into 16 nonstructural proteins (nsp 1-16) to create a replicase/
transcriptase complex (RTC).
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Viral replicase/transcriptase complex (RTC)

The nsp12, also known as the RNA-dependent RNA-polymerase (RdRp), is the core 
component of SARS-CoV-2 RTC that operates replication and transcription of the viral 
RNA (17, 25, 26). The nsp12/RdRp has limited or no catalytic activity; however, when 
it forms a complex with specific viral proteins, a significant polymerase function is 
acquired (27, 28). Accordingly, the nsp12/RdRp forms a complex with two cofactors nsp7 
and nsp8 for structure-functional support (29); nsp9, the dimer forming RNA-binding 
protein; nsp10, the cofactor in viral replication; and nsp14, the exoribonuclease (ExoN) 
(23, 29–31). The nsp14/ExoN serves as a CoV-specific intrinsic mechanism (absent in 
other RNA viruses) that effectively removes incorporated nucleoside analogs and restores 
the viral polymerase function [Neogi et al. 2020] (32). This proofreading ability of nsp14/
ExoN is a setback for NA inhibitors such as remdesivir to block the RNA replication 
in SARS-CoV-2. Although the interaction between all these CoV-nsps is important for 
optimal replication of the viral RNA, the nsp7-nsp8-nsp12 complex constitutes the min-
imal core for RTC function (33). After host cell invasion, the viral genomic RNA serves 
as a template, and reprograms the host metabolism (including the protein synthesis 
machinery) to facilitate the translation of RdRp enzyme. Subsequently, the RdRp polym-
erizes a high quantity of nucleotides to support an uninterrupted viral replication.

RNA-dependent RNA polymerase (RdRp)/nsp12

The RNA-dependent RNA polymerase (RdRp)/nsp12 plays a central role in the repli-
cation and transcription cycles of SARS-CoV-2 via catalytic synthesis (polymerization) 
of the viral RNA (23). Due to its high evolutionary stability, RdRp has no counterpart 
in human cells; therefore, represents a unique antiviral target (34,35). The core struc-
tural features of RdRps are highly conserved across several viral species, despite the 
divergence in their sequences (36). The protein sequence homology between SARS-CoV-2 
and SARS-CoV RdRp is about 96% and structural disparities exist only in the cata-
lytically inactive domains (37).

Structure-function of SARS-CoV-2 RdRp complex

The RdRp complex of SARS-CoV-2 consists of a nsp12 core catalytic unit, a nsp7-nsp8 
(nsp8-1) heterodimer, and an additional nsp8 subunit (nsp8-2) (23, 38). The RdRp 
structure has a ‘polymerase’ domain (residues Ser367 to Phe920) that resembles a cupped 
‘right hand’ and a unique nidovirus RdRp-associated nucleotidyltransferase (NiRAN) 
domain (residues Asp60 to Arg249), where both interact through an ‘interface’ domain 
(residues Ala250 to Arg365) (23, 39). This domain also consists of the ‘fingers’ subdomain 
(residues Leu366-Ala581 and Lys621-Gly679), the ‘palm’ subdomain (residues Thr582-Pro620 
and residues Thr680-Gln815), and the ‘thumb’ subdomain (residues His816-Glu920) (40). 
The ‘finger’ subdomain stabilizes the template RNA and facilitates specific interactions 
with major residues in the active enzymatic site (41). The ‘thumb’ subdomain harbors 
residues that pack against the template RNA and stabilizes the nucleoside triphosphates 
(NTPs) on the template (42). This subdomain translocates the template RNA after 
polymerization and accommodates any conformational rearrangements. There is an 
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N-terminal β-hairpin (residues Asp29 to Lys50) between the ‘palm’ subdomain and the 
‘NiRAN’ domain that help stabilize the RdRp structure (Figure 1A) (23).

Core catalytic site of SARS-CoV-2 RdRp complex

The active enzymatic site of RdRp is formed by seven conserved catalytic motifs, 
from A to G. Five of these motifs (A-E) are in the ‘palm’ subdomain and the other 

Figure 1. The RdRp complex of SARS-CoV-2 consists of a nsp12 core catalytic unit, a nsp7-nsp8 
(nsp8-1) heterodimer, and an additional nsp8 subunit (nsp8-2). the rdrp structure resembles a 
cupped ‘right hand’ and a unique niran domain, both interacting via an ‘interface’ domain that 
consists of subdomains – the ‘fingers’, the ‘palm’, and the ‘thumb’. an n-terminal β-hairpin is located 
between the ‘palm’ and the ‘niran’ domain. the active enzymatic site of the rdrp is formed by 
seven conserved catalytic motifs, from a to G.
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two (F and G) are located in the ‘finger’ subdomain (Figure 1B). Motif A (residues 
Thr611 to Met626) houses the catalytic motif ‘DX2-4D’, in which the first aspartic acid 
(Asp618) residue is common to most viral polymerases. The flexible loop in motif B 
(residues Gly678 to Thr710) serves as a hinge that undergoes conformational modifi-
cation with template RNA during the substrate binding (43). Motif C (residues Phe753 
to Asn767) with its catalytic motif SDD (residues Ser759 to Asp761), is essential for 
binding to metal ions (44, 45). The aspartate residues Asp760 and Asp761 are involved 
in the coordination of two magnesium (Mg2+) ions at the catalytic center (38). These 
conserved aspartic acids in the catalytic motif DX2-4D and SDD motifs regulate the 
polymerase activity. Motif F (residues Leu544 to Val557) interacts with the phosphate 
group of incoming NTP, and its side chain (residues Lys545 and Arg555) directs the 
NTPs to specific positions for catalysis. Motif G (residues Asp499 to Lys514) interacts 
with the template strand and directs the RNA template to the active catalytic site. 
The active site has a highly conserved architecture of α-helices, antiparallel β-strands, 
RNA recognizing motifs (46) and the enzymatic catalysis requires both aspartates 
and divalent metal ions (47).

The RdRp mediates a template-directed RNA synthesis for SARS-CoV-2 replication, 
where entry of the RNA template, the NTP, and exit of the nascent RNA strand, all 
converge into a positively charged central cavity (23, 48). The NTP entry channel is 
separated by the hydrophilic motif F (residues Lys545, Arg553, and Arg555) (23). The 
RNA template enters from a channel between motifs F and G into the active site, 
formed by motifs A and C, and held by motifs B and D (28).

In CoVs, RdRp catalyzes the synthesis of the RNA genome using the (+)RNA strand 
as a template to produce a complementary (−)RNA strand starting from 3′-poly-A tail 
(19). There are two plausible molecular mechanisms to initiate the genomic RNA 
synthesis by RdRp: i) the primer-independent (de novo) synthesizes the genomic RNA 
by forming a phosphodiester bond with 3′-hydroxyl group linked to 5′-phosphate 
group of the adjacent nucleotide (49); and ii) the primer-dependent synthesis generates 
a new RNA complementary to the template with base pairing under the guidance of 
either an oligonucleotide or a protein primer (50). Furthermore, four cellular ribonu-
cleotide triphosphates (rNTPs), ATP, GTP, CTP, and UTP provide the template sub-
strates, which are recognized by RdRp. Divalent metal ions magnesium (Mg2+) and 
manganese (Mn2+) act as essential cofactors in the polymerization reaction and coor-
dinate the catalytic aspartates to promote reactivity with rNTPs (51).

Inhibitors of SARS-CoV-2 RdRp complex

Upon infection, SARS-CoV-2 releases its RNA into the host cell and reprograms host 
metabolic machinery to replicate its viral genome and produce viral progeny to infect 
new cells. In a host-targeted approach, the inhibition of specific enzymes or factors 
of the infected cell may block viral propagation. A broad-spectrum antiviral activity 
could be achieved with this approach, since the host-based cellular processes hijacked 
by most viral pathogens are somewhat similar (52). Virus-specific genomic/protein 
components are critical for viral life cycle. Also, the host cellular machinery that viral 
pathogen has reprogrammed during infection process is fundamental for its 
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propagation. Therefore, both the viral-targeted interventions as well as the host-targeted 
prevention strategies cumulatively define the therapeutic efficacy (53). A viral infection 
could be controlled with compounds that either directly or indirectly block the viral 
nucleic acid synthesis, or that drive the viral mutation rate over a threshold to prevent 
viral replication (often referred to as ‘lethal mutagenesis’) (3, 54).

Direct-acting antiviral agents (DAAs) represent a class of compounds that target 
viral proteins, i.e. nucleobases, nucleoside or nucleotide analogs that after activation 
of their corresponding non-natural nucleoside 5′-triphosphate (NTP) form via host cell 
pathways – are inserted ‘erroneously’ into the viral genome by the viral polymerase. 
However, the DAAs pose several inherent limitations, including their narrow-spectrum 
antiviral activity and vulnerability to drug resistance.

Host-targeted antiviral (HTA) compounds block cellular pathways that generate 
natural NTPs, thereby deprive viral polymerases of their natural substrates – a ther-
apeutic strategy widely practiced in anticancer treatment. The HTA strategies exhibit 
a broad-antiviral spectrum independent of viral genetic control; therefore, possess a 
higher genetic barrier to drug resistance compared to the DAAs (55).

Molecular machinery involved in every stage of viral replication cycle has been 
targeted for drug development (56). In particular, the RdRp shares similar catalytic 
mechanisms and displays active site conservation among different positive-sense RNA 
viruses; therefore, it is a potential drug target (42). Evolutionary studies of whole-genome 
sequences of SARS-CoV-2 represent high degree identity (>90%) with other SARS 
viruses. Targeting the RdRp active sites, Asp760 and Asp761, by antiviral drugs could 
be a potential therapeutic option for inhibition of CoV RdRp, and thereby the viral 
replication (57). Given the 98% amino acid similarity of the SARS-CoV and SARS-CoV-2 
RdRps, repurposing of these enzyme inhibitors from the SARS outbreak may also 
effectively inhibit the SARS-CoV-2 polymerase (58).

Redox biochemistry of viral RdRp-ligand (inhibitor) interactions

Charge-induced conformational modifications: The polymerase activity of RdRp complex 
is regulated by switching between various structural conformations. The modular nature 
of RdRp complex to shift between various conformations and energy states is governed 
by redox transitions of the milieu and the interaction of core catalytic site of the enzyme 
protein with its ligand (substrate or inhibitor). Redox transitions are intrinsic to several 
biological systems that play a regulatory role in the transmission of cellular signals (59). 
Essentially, a functional RdRp complex requires both structural rigidity and flexibility 
to allow optimal interaction of active residues in its catalytic binding site with the ligands 
(substrate or inhibitor). The redox transitional states support the bioenergy demand for 
conformational association and dissociation of molecules, a prerequisite for functional 
outcomes of a protein–ligand interaction (59, 60).

Hydrogen (H)-bonds are responsible for secondary and tertiary structural protein 
motifs. In protein environments, redox (H+ proton transfer) reactions occur along polar 
or charged residues and isolated water molecules. These compounds consist of H-bond 
networks that serve as redox sensors; therefore, an in-depth understanding of redox 
mechanism(s) is essential to elucidate H-bond energetics in protein-ligand interactions 
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(61). Since, protons (H+) are redox sensors, the formation of H-bonds between a ligand 
and a protein motif explains the binding affinity of an inhibitor toward the RdRp 
protein target in molecular dynamic simulations; accordingly, more number of H-bonds 
reflect a stronger interaction (62). The active site of the SARS-CoV-2 RdRp is formed 
by conserved polymerase motifs (A-G), where the motifs A and C have the 
divalent-cation-binding amino acid Asp618, and the catalytic residues Ser759-Asp760-Asp761, 
respectively (23). The cellular redox state governs the van der Waals and π-Sulfur 
interactions with amino acid residues of the catalytic center and the NTP entry channel 
of the SARS-CoV-2 RdRp-RNA complex (59, 63). 

Almost all viruses have polymerases that play a pivotal role both in viral replication 
and in the genetic evolution of viral RNAs. After binding to an RNA template and 
incorporating 5′-triphosphate ribonucleosides, viral polymerases synthesize an RNA 
copy according to the Watson-Crick base-pairing rules. The copying process sometimes 
may deviate from both the base-pairing rules specified by the template and the natural 
ribose selectivity and, thus, the process is error-prone due to the intrinsic (in)fidelity 
of viral polymerases (64). This genomic infidelity increases the possibilities for a 
polymerase enzyme to accept modified nucleotide analogs as substrates. Accordingly, 
nucleoside analogs that inhibit polymerases have emerged as important class of antiviral 
agents (65).

Nucleotide analog inhibitors (NAIs)

Nucleotide analog inhibitors (NAIs) exhibit spectral antiviral activity and target the 
active site of viral RdRps. Many NAIs are active against various CoV RdRp genotypes, 
an indication that the catalytic active sites bound by this type of inhibitors are highly 
conserved (21). The NAIs target RdRp protein translation and competitively block the 
nucleotide insertion into the RNA chain, resulting in the inhibition of viral RNA 
replication (16, 66). Classical antiviral NAIs are obligate RNA chain terminators, and 
the lack of a reactive 3′-hydroxyl (3′-OH) group makes these compounds potent RdRp 
inhibitors (67). NAIs of RNA viruses, developed mostly as prodrugs, require a phos-
phorylation step, convert into a triphosphate (TP) form to target the highly conserved 
active site of RdRp (16). NAIs against RdRp are classified into three major categories: 
i) pyrimidine nucleoside inhibitors, ii) purine nucleoside inhibitors, and iii) miscella-
neous nucleoside inhibitors (Figure 2).

Pyrimidine nucleoside (CTP/UTP/TTP) inhibitors: Cytidine (C)-NAIs are metabo-
lized to both CTP and UTP through cytidine deaminase activity. The UMP derivatives 
are also potent direct-acting antiviral agents (DAAs). The thymine (TTP)-NAIs display 
pangenotypic activity with a high in vitro barrier to resistance (16, 68).

Purine nucleoside (ATP/GTP) inhibitors: Adenine (A)-NAIs interfere with viral 
RdRp activity; however, their monophosphorylation kinetics are slow. The use of a 
parent nucleoside modified with monophosphate could elevate the intracellular NTP 
levels. Remdesivir is an A-NAI that effectively bypasses this rate-limiting step of 
monomer phosphorylation (69, 70). Remdesivir occupies the central position of the 
catalytic active site and forms a covalent bond with the primer RNA strand, and blocks 
replication by non-obligate RNA chain termination (23, 71). Remdesivir in triphosphate 
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(TP) form incorporates into RNA, replaces the ATP binding with counterpart template 
uridine (U) and blocks the replication of SARS‐, MERS‐, and SARS‐CoV‐2 pathogens 
(34). Guanine (G)-NAIs are preferentially cleaved by hepatic enzymes to form TP, 
which selectively inhibit NS5B polymerase but does not inhibit human polymerases 
a, b or g (16).

Limitations in the development of NAI-based interventions: Since the genomic size 
of CoVs are unusually large, their replication is more complex compared to other 
RNA viruses. Replication of large RNA requires an evolved RTC machinery, which 
has been achieved through the structural combination of nsp7+nsp8 + nsp12 (RdRp 
complex) [Gorbalenya 2006] (28, 72). The large-sized RNA replication also involves 
nsp14, a 3′ to 5′ exoribonuclease (nsp14-ExoN) to remove any mis-incorporated nucle-
otides (i.e. NAIs) to minimize high error rates typical of viral RNA polymerases to 
prevent negative fitness effects [Ferron et  al. 2018, Ogando et  al. 2019]. This replication 
proofreading function of nsp14-ExoN has significantly hampered the development of 
NAI-based drug development against COVID-19. The nsp14-ExoN excises the incor-
porated NAIs and provides resistance to SARS-CoV-2 against many anti-RdRp inhibitors 
(32). The nsp14-ExoN confers up to 20-fold increase in replication fidelity compared 
to other RNA viruses and responsible for developing resistance to many NAIs against 
CoV pathogens (73). For example, the anti-RdRp efficacy of the NAI drug remdesivir 
could be compromised by the ExoN that abrogates the NAI-induced lethal mutagenesis 
and prevents the incorporation of any mismatched nucleotides into the viral genome 
(29, 30). A combination therapy with an NAI drug (i.e., favipiravir, remdesivir, riba-
virin, or galidesivir) with a phytonutrient inhibitor (i.e. conivaptan or hesperidin) of 
ExoN domain of SARS-CoV-2-nsp14 could be effective in increasing the efficacy of 
the RdRp inhibitors (74).

Another limitation in the NAI development is the presence of intracellular natural 
nucleotide triphosphates (NTPs) at high levels. Therefore, the triphosphorylated (TP) 

Figure 2. Virus targeted rna-dependent rna-polymerase (rdrp) inhibitors.
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form of NAI must compete with the highly concentrated cellular pool of NTP for 
antiviral activity. Accordingly, the effective dosage of NAI needs to be adjusted high, 
which may increase the risk of drug toxicity (16, 17).

Non-nucleoside analog inhibitors (NNAIs)

Non-nucleoside analog inhibitors (NNAIs) bind to allosteric sites on the surface of 
polymerase enzyme, change its spatial conformation; thereby, exert antiviral activity 
by altering interactions between the enzyme substrate and the active core catalytic 
site of the RdRp (75). Such inhibitors neither require metabolic activation (unlike 
triphosphorylation of NAIs) nor compete with intracellular pool of NTP for 
anti-RdRp activity. The structures of NNAIs, especially of the phytonutrient category 
are diverse, which makes these natural bioactive compounds as potential antiviral 
candidates compared to their synthetic counterparts (i.e. becklabuvir, lomibuvir, 
nesbuvir). However, the structural variability and non-conservation of adjacent 
allosteric sites may also allow CoV pathogens to develop resistance against allosteric 
site inhibitors (16, 17, 76). NNAIs against RdRp are classified into three major 
categories: i) RdRp-Finger NNAIs, ii) RdRp-Palm NNAIs, and iii) Phytonutrient 
NNAIs (Figure 2).

Thumb Inhibitors: Benzimidazole and indole compounds are prominent Thumb I 
inhibitors that bind via hydrophobic interactions and salt bridge/H-bonds between the 
ester group or carbonyl group of the compound and the guanidine group of the amino 
acid residue (77). Thumb II inhibitors are dihydropyrones, thiophene carboxylic acids 
and pyranoindole compounds with lipophilic groups that occupy the shallow grooves 
formed by the amino acid residues Leu419, Tyr477 and Trp528 in the thumb II site. The 
acidic groups of these compounds generate H-bonds with the backbone amide bonds 
with amino acid residues Ser476 and Tyr477 (78).

Palm Inhibitors: N-aryl uracil (U) analogs, benzothiadiazines and acyl pyrrolidines 
are Palm I inhibitors that bind ‘palm I’ site located between the active site of the RdRp 
enzyme and the ‘palm II’ site which contains a deep hydrophobic pocket (79). Palm 
II inhibitors such as benzofurans bind to the ‘palm II’ site mainly composed of a large 
hydrophobic pocket in the palm area. The palm II site inhibitors differ from other 
NNAIs in that they exhibit potent activity against genotypes 1 to four and NS5B 
polymerase (80).

RNA-viruses, such as the CoVs, have short generation time (81); therefore, require 
high amounts of NTPs from host metabolic reserves to sustain their high replication 
rate. Any deprivation or imbalance in the cellular NTP pool could severely compromise 
the viral genome synthesis and inhibit viral replication. However, a balanced inhibition 
of the cellular pathway is critical to maintain viability of the host cells while blocking 
the viral replication (55, 82).

The ongoing COVID-19 pandemic has globally initiated an extensive high through-put 
screening for potent plant-based natural NNAIs against SARS-CoV-2 RdRp enzyme. 
Potent and promising bioactive phytonutrients are being identified by in silico molecular 
docking studies and evaluated for viral protein-ligand (‘inhibitor’) binding affinities to 
SARS-CoV-2 gene-encoded molecular targets. Finally, taking advantage of nontoxic 
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properties or absence of side effects in human applications, phytonutrients are directly 
compared for functional efficacy with prominent antiviral drugs (i.e. ‘remdesivir’, the 
US-FDA approved drug for treatment of severe COVID-19 cases), and such promising 
natural bioactive compounds derived from plant-sources are currently subjected for 
human clinical testing worldwide.

Phytonutrient NNAIs against the SARS-CoV-2 RdRp complex

Phytonutrients and bioactives from medicinal herbs that are extensively characterized, 
could provide a new direction in the development of novel anti-COVID-19 prophy-
lactics and therapeutics (83, 84). Notably, several efficient drugs designed in the past 
are based on the structure of natural compounds with desired biological activities. 
Almost half the drugs approved between 1981 and 2014 by the US-FDA, were derived 
from or mimicked a natural compound (85). Based on high diversity, complex molec-
ular structure(s), broad-spectrum activity including inhibition of viral transcription/
translation, as well as considering their overall safety and non-cytotoxicity, phytonu-
trients could be potential candidates for anti-COVID-19 interventions (86, 87). During 
this COVID-19 pandemic, several clinical practices have integrated complementary or 
traditional medicine, as adjuvant therapeutic protocol with the Western medicine  
(88, 89). Herein a few promising phytonutrient RdRp inhibitors are described, that 
deserve further attention and evaluation as possible NNAI intervention(s) for COVID-19 
management (Figure 3).

Suramin

Suramin, a phytonutrient naturally found in tea from eastern white pine tree needles 
(Pinus strobus) has been widely used to treat African sleeping sickness and river 
blindness for over a century (90). Suramin is a polyanionic compound that binds to 
positively charged patches in DNA or RNA binding proteins (91). Also, suramin is a 
potent antiviral agent with wide range of effects, including inhibition of viral attach-
ment, viral entry, and viral release from host cells via interactions with viral capsid 
proteins (92).

Suramin inhibits SARS-CoV-2 infection in cell cultures by blocking cellular entry 
of the virus (93). In a recent study, a dosage of 8–32 µM suramin nearly abolished 
the elongation of the RNA primer strand compared to 100–1,000 µM dosage of rem-
desivir, for a comparable degree of inhibition. Also, 100 µM of suramin totally blocked 
formation of RdRp–RNA complex compared to a 5 mM dosage of remdesivir; thus, 
the RdRp inhibition potency of suramin is at least 20-fold more than remdesivir (38)

Suramin is a direct and potent NNAI of the SARS-CoV-2 RdRp enzyme. The 
cryo-structural analysis of the viral RdRp-suramin complex revealed two binding sites. 
One site that directly blocks binding of the RNA template strand and the other site 
clashes with the RNA primer strand adjacent to the RdRp catalytic site, both result 
in RdRp inhibition (94). Structural comparison of the RdRp–suramin complex with 
the RdRp-remdesivir complex revealed that the mode of RdRp inhibition of the 
phytonutrient-NNAI is different from the pharmaceutical-NAI. If the base position of 
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remdesivir is defined as +1 position, then the first suramin molecule occupied the 
space of −1 to −3 positions of the RNA template strand. The second suramin molecule 
at the active site occupies the space of the primer strand ranging from −4 to +1 
positions. Binding of two suramin molecules block the RNA template–primer duplex 
interaction with the active site as well as the entry of nucleotide triphosphate into the 
catalytic site, resulting in direct inhibition of the RdRp catalytic activity. In a recent 
UK study, suramin (50 µM) demonstrated total inhibition of RNA duplex formation. 
Suramin and its derivatives also blocked the activity of both SARS-CoV-2 RdRp and 
nsp13/helicase in cell-based assays (38, 72).

Silibinin

Silibinin, the flavonolignan component of the silymarin extract obtained from the ‘milk 
thistle’ herb (Silybum marianum) (95), directly inhibits the SARS-CoV-2 RdRp enzyme, 
as well as reduces the signal transducer and activator of transcription (STAT3)-induced 

Figure 3. Structures of phytonutrient non-nucleoside analog inhibitors (nnais) against SarS-CoV-2 
rdrp enzyme. the most important structural attributes of potential anti-SarS-CoV rdrp nnais 
include hydrogen (H)-bonding capacity for the 2’ and 3’ groups of the sugar ring and C3’ endo sugar 
puckering, and the absence of a hydrophobic binding pocket for nnais (76).
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lung and systemic inflammation in the infected host (96). The dual ability of silibinin 
to target both the viral replication machinery and the host cytokine storm provides 
a strong rationale for the clinical testing of this phytonutrient for COVID-19 
management.

Docking simulations of silibinin with SARS-CoV-2 RdRp complex yielded eleven 
possible clusters, of which three have occupied the RNA template tunnel of the viral 
polymerase enzyme. Based on the free binding energies (ΔG up to −9.4 kcal/mol), 
silibinin clusters with highest affinity were in the low (∼100 nmol/L) nanomolar range, 
like that of remdesivir. Silibinin interacted with well-characterized catalytic aspartate 
residues (i.e. Asp618, Asp623, Asp760, Asp761) as well as with other key residues (Arg555, 
Val557, Thr680, Ser682, Asn691) involved in the RdRp interaction with the entry path of 
RNA template/NTPs (96)

The macrophage- and neutrophil-dependent activation of STAT3 plays a critical role 
in acute lung inflammation and lung tissue damage (97). Accordingly, increased alveolar 
epithelial death and phosphorylated STAT3 are common phenotypic traits in COVID-19 
with acute respiratory distress syndrome (ARDS) (98). Therefore, STAT3-mediated cel-
lular modulation of pulmonary inflammation could relieve the severity of ARDS 
symptoms in COVID-19 patients (36). As a potent inhibitor of STAT3 and a master 
regulator of inflammatory cytokine signaling and immune response (97), Vendura et 
al. (100), silibinin can be expected to limit the cytokine storm and T-cell lymphopenia 
in severe COVID-19 patients. Pretreatment with silibinin inhibits LPS-induced recruit-
ment of airway inflammatory cells as well as the production of specific pro-inflammatory 
cytokines (i.e. IL-1β, TNFα), which may provide protection against lung injury (101). 
Silibinin may protect damaged lung tissue by regulating the inflammatory cell cascade 
(i.e. macrophages, T-cells, and astrocytes) during tissue repair (102). Thus, silibinin 
may also act as an immune therapeutic to alleviate cytokine storm and T-cell lymph-
openia in severe COVID-19.

In earlier clinical trials with HIV-infected patients, co-administration of silibinin 
with multiple antiretrovirals (i.e. darunavir-ritonavir) showed safety and well tolerance 
profile without any need for dose adjustment with anti-viral therapy (103). Currently, 
a cohort study at the Catalan Institute of Oncology in Catalonia, Spain will evaluate 
the oral bioavailability, single and multidose pharmacokinetics, and safety of a ‘milk 
thistle’ (Eurosil85) formulation for clinical management of COVID-19. This randomized, 
open-label, phase II multicenter clinical trial (SIL-COVID19), will also test the ther-
apeutic efficacy of silibinin to prevent ARDS in moderate-to-severe COVID-19-positive 
onco-hematological patients (94).

Tea polyphenols

Tea is a rich source of bioactives and known to exert broad spectrum activities against 
human viral pathogens, including HIV, herpes simplex virus, influenza, hepatitis B, 
and hepatitis C (104). Potent antiviral activities of bioactive tea molecules against 
several protein drug targets of SARS-CoV-2 were reported (105–107). Three bioactive 
molecules isolated from tea demonstrated specific interaction with the active site of 
the SARS-CoV-2 RdRp-RNA complex and the NTP entry channel of the viral enzyme, 
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both values were higher compared to the FDA-approved antiviral drugs remdesivir 
and favipiravir (63). The catalytic center of SARS-CoV-2 RdRp is a highly conserved 
domain that contains residues Ser759, Asp760, and Asp761 (23, 38). Furthermore, the 
residues Lys545, Arg553, and Arg555 in the RdRp-RNA complex facilitate formation of 
the NTP entry channel. The first tea bioactive, Epicatechin-3,5-di-O-gallate forms three 
H-bonds and a π-anion interaction with the Uracil at position 20 of the primer RNA 
strand and stabilizes inside the active pocket of RdRp-RNA complex by eight H-bonds 
with π-anion and π-Lone Pair interactions. Several residues of RdRp along with the 
adenine (A) and uracil (U) of the template RNA strand at positions 11 and 10 show 
van der Waals interactions. The second molecule from tea, Epigallocatechin-3,5-di
-O-gallate, forms two H-bonds with uracil (U) at position 20 of primer RNA and 
binding to the active pocket of RdRp-RNA complex involves nine H-bonds with π-alkyl 
and van der Waals interactions. The third tea polyphenol, Epigallocatechin-3,4-di
-O-gallate binds to the primer strand uracil (U) at position 10 via two H-bonds, while 
the adenine (A) at position 20 of the same RNA strand forms one H-bond with three 
π-anion, two π-alkyl, and one π Lone Pair interaction(s) at the RdRp active site. In 
comparison, both remdesivir and favipiravir form significantly weaker van der Waals 
and π-Sulfur interactions with amino acid residues of the catalytic center and the NTP 
entry channel of the SARS-CoV-2 RdRp-RNA complex (63).

Theaflavin

Theaflavin and Theaflavin gallate, the black tea polyphenols, show broad‐spectrum 
antiviral activity (109). Theaflavin 3,3′-digallate (TF3), Theaflavin 3-gallate (TF2a) and 
Procyanidin B2 inhibit specific targets of SARS-CoV-2 and considered as promising 
intervention candidates for COVID-19 management (108). TF3 (ΔG = −14.92 kcal/
mol), Procyanidin B2 (ΔG = −11.68 kcal/mol) and TF2a (ΔG = −10.90 kcal/mol) exhibit 
high binding affinities toward RdRp of SARS-CoV-2 with low docking scores (110). 
Theaflavin and its derivatives from traditional Chinese medicine were docked into the 
catalytic pocket near the active site of RdRp in SARS‐CoV‐2 (ΔG = −9.11 kcal/mol), 
SARS‐CoV ((ΔG = −8.03 kcal/mol), and MERS‐CoV ((ΔG = −8.26 kcal/mol). Theaflavin 
forms H-bonds and π‐cation interaction with Arg553 in the catalytic pocket of SARS‐
CoV‐2 RdRp complex. Theaflavin also inhibits the RdRp activity via blocking the 
active site in the enzymatic scaffold (111).

Baicalein

Baicalein (5,6,7-trihydroxyflavone) could block the viral replication in cell culture 
systems by inhibiting the RdRp activity of SARS-CoV-2 (113, 114). This natural bio-
active flavone is found in the root of Scutellaria baicalensis, an ‘East Asian skullcap’ 
plant, widely used in traditional Chinese medicine for the treatment of hyperlipidemia, 
hypertension, atherosclerosis, and common cold (115, 116). Baicalein, along with its 
analog baicalin, could inhibit certain types of lipoxygenases (LOs) [i.e. human platelet 
12-LO (12-hLO) and human reticulocyte 15-LO (15-hLO)], and act as anti-inflammatory 
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agents (117). Both compounds are also potent inhibitors of several RNA viral pathogens 
such as Dengue and Zika viruses (118, 119).

In the antiviral assay, baicalein and baicalin at 20 µM dose showed 99.8% and 98% 
inhibition of SARS-CoV-2, respectively. In dose-dependent inhibition assay, baicalein 
(EC50 4.5 µM) demonstrated more potent antiviral activity than baicalin (EC50 9.0 µM) 
against SARS-CoV-2 replication in Vero cells. At 30 µM concentration, only baicalein 
(14.6%), but not baicalin (−3.3%), could inhibit the SARS-CoV-2 pseudovirus entry 
(113). In an experimental murine model (LPS-induced acute lung injury), oral admin-
istration of baicalein (200 mg/kg) in crystal β form showed improvement in the respi-
ratory function, inhibition of inflammatory cell infiltration in the lung, and decreased 
serum levels of IL-1β and TNF-α (112).

Baicalein (ΔG = −8.7 kcal/mol) and baicalin (ΔG = −7.8 kcal/mol) interact with 
SARS-CoV-2 RdRp with stronger binding energy than remdesivir (ΔG = −6.5 kcal/
mol). Baicalein seems to bind His133 residue in the nucleotidyl-transferase domain and 
Asn705 residue in the palm domain of SARS-CoV-2 RdRp enzyme, which differs from 
the specific binding sites for remdesivir (113, 119). Since, the anti-RdRp mode of 
action of remdesivir (the NAI agent), seems to be different from baicalein (the NNAI 
agent), a combinational treatment with these two classes of antiviral agents could be 
a potential option for COVID-19 management.

Corilagin

Corilagin (RAI-S-37), is a gallotannin from plants such as Caesalpinia coriaria, Alchornea 
glandulosa and found in the leaves of Punica granatum (pomegranate) (120). This 
phytonutrient is known for potent anti-tumor, anti-inflammatory and hepatoprotective 
activities (121). As an NNAI of SARS-CoV-2 RdRp, corilagin binds directly to RdRp 
and effectively inhibits viral polymerase activity in both cell-free and cell-based assays, 
fully resists the proofreading activity and potently inhibits SARS-CoV-2 infection with 
a low 50% effective concentration (EC50) value of 0.13 μmol/L (122). Based on com-
putation modeling, corilagin binds to the palm domain of RdRp and prevents confor-
mational changes required for nucleotide incorporation by RdRp.

Although remdesivir has been shown to be more effective than other NAIs, it is 
sensitive to the proofreading activity of SARS-CoV-2 nsp14/ExoN domain (32). 
Expression of nsp10-nsp14 leads to a 2.1-fold increase in EC50 value of remdesivir in 
cell-based RdRp activity assays. In contrast, the EC50 values of corilagin (RAI-S-37) 
sustains the same efficacy in the absence or presence of the nsp10-nsp14, which indi-
cates that this phytonutrient-NNAI is unaffected by the proofreading activity of 
SARS-CoV-2 (115). Since, the anti-RdRp mode of action for corilagin and remdesivir 
are different, a combinational intervention with these two antivirals has been indicated 
for COVID-19 management.

Hesperidin

Hesperidin, a bioflavonoid mainly found in citrus fruits, shows high binding affinity 
and stability when complexed with the active sites in RdRp and Mpro enzymes of 
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SARS-CoV-2 (123). Hesperidin contains both the flavanone hesperitin (aglycone) and 
the disaccharide rutinoside (rhamnose linked to glucose), with widely known antiviral, 
and anti-inflammatory effects. The multifunctional activities of hesperidin are attributed 
to its antioxidant properties and inhibition of mitogen-activated protein kinase (MAPK)-
dependent signaling pathways (124).

In molecular docking and molecular dynamic simulation studies the binding affin-
ities and ligand stability of hesperidin with SARS-CoV-2 enzymes: Mpro (ΔG = 
−15.18 kcal/mol) and RdRp (ΔG = −9.46 kcal/mol) are superior to the docking scores 
for antiviral drugs: remdesivir (-8.2 kcal/mol for Mpro and −7.5 kcal/mol for RdRp); 
lopinavir (-7.9 kcal/mol for Mpro and −6.9 kcal/mol for RdRp) and ritonavir (-8.2 kcal/
mol for Mpro and −7.2 kcal/mol for RdRp). Also, hesperidin strongly interacts with the 
amino acid residues Ser759-Asp760-Asp761 in the catalytic site as well as the 
divalent-cation-binding residue Asp618 in the SARS-CoV-2 RdRp enzyme (123). Based 
on the safety (low cytotoxicity), the predicted ADMET profile, and the ability to form 
high affinity/stable complexes with SARS-CoV-2 replicase enzymes, hesperidin could 
be a promising multitarget antiviral agent for COVID-19 management.

Lycorine

Lycorine, a bioactive pyrrolidine alkaloid isolated from the bulbs of Lycoris radiata, 
exhibits several pharmacological and broad-spectrum antiviral effects (125). Lycorine 
effectively inhibits several CoV pathogens (126, 127), including SARS-CoV (IC50 = 
1.02 µM), MERS-CoV (IC50 = 2.12 µM) and SARS-CoV-2 (IC50 = 0.88 µM), more effec-
tive than the antiviral activity of remdesivir (IC50 = 6.5 µM) (128). The binding affinity 
of lycorine (ΔG = −6.2 kcal/mol) with SARS-CoV-2 RdRp protein is stronger than that 
of remdesivir (ΔG = −4.7 kcal/mol). Remdesivir is known to inhibit SARS-CoV-2 RdRp 
activity via non-obligate RNA chain termination by targeting the core catalytic active 
site on the RdRp enzyme (38). Lycorine shows similar binding position that overlaps 
with the nucleoside rings of remdesivir in the same pocket region of the catalytic 
active site on the viral polymerase. Lycorine forms H-bonds with Asp623, Asn691, and 
Ser759 residues on RdRp protein, similar to remdesivir. Lycorine is a potent NNAI 
against RdRp activity of several CoV pathogens and more effectively on SARS-CoV-2; 
therefore, may be a promising candidate for COVID-19 management.

Medicinal herbs and other natural products

Several phytonutrients from North-South African medicinal plants have demonstrated 
higher docking scores with RdRp than remdesivir, the reference antiviral drug. Based 
on molecular dynamic simulation data and free energy calculations, the docking scores 
for 3-O-α-l-arabinopyranosyl-echinocystic acid (ΔG= −9.9 kcal/mol), 3′-epiafroside (ΔG= 
−9.3 kcal/mol), and Genkwanin 8-C-β-glucopyranoside (ΔG= −9.1 kcal/mol), are report-
edly several-fold higher than remdesivir (ΔG= −7.1 kcal/mol) (129). Also, Argemone 
mexicana L., known as ‘Ghamoya’ is used in herbal medicine as an anti-inflammatory, 
immune-modulator, anti-spasmodic and anti-HIV agent (130). Molecular docking data 
showed that Protopine (ΔG = −6.07 kcal/mol), Allocryptopine (ΔG = −5.75 kcal/mol) 
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and (±) 6-Acetonyldihydrochelerythrine (ΔG = −5.66 kcal/mol) from this plant are 
potential RdRp inhibitors of SARS-CoV-2 (131).

Several secondary metabolites from Indonesian herbal plants have shown potent 
antiviral activity (132). An in silico molecular docking study has identified several 
phytonutrient RdRp inhibitors such as Justicidin D (ΔG= −8.7 kcal/mol), 
10-Methoxycamptothecin (ΔG= −8.5 kcal/mol), Inoxanthone (ΔG= −8.3 kcal/mol), and 
3-O-Caffeoylquinic acid (ΔG= −8.2 kcal/mol). Binding affinities of these plant-derived 
compounds were higher compared to the reference antiviral drugs remdesivir (ΔG= 
−8.2 kcal/mol), hydroxychloroquine (ΔG= −6.7 kcal/mol), and chloroquine (ΔG= 
−5.8 kcal/mol) (133).

Propolis from (honeybee products) contains bioactives including phenolic acids, 
flavonoids, and terpenes with broad spectrum antiviral effects. The ellagic acid inter-
action with RdRp utilizes five H-bonds with Gly808, Pro809, His816, Thr817, and Tyr 831 
while amino acid residues Asp761 and Glu811 are involved in H-bonding with hesperitin, 
and kaempferol. The aromatic ring of ellagic acid, hesperetin, and kaempferol is involved 
in π-ion hydrophobic interaction with Lys798 residue of SARS-CoV-2 RdRp. In molec-
ular docking studies, phenolics such as ellagic acid (ΔG= −6.4 kcal/mol), hesperetin 
(ΔG= −6.3 kcal/mol), and kaempferol (ΔG= −6.2 kcal/mol), showed high-affinity inter-
actions with the RdRp enzyme and considered effective COVID-19 inhibitors (134).

Apart from the NNAI spectrum of the specific phytonutrients against the SARS-CoV-2 
RdRp, the potential health benefits of these natural compounds on regulation of various 
physiological functions has also been elucidated (Table 1). This bio-functional aspect 
of phytonutrient NNAIs has significant clinical relevance, since the pathobiology of 
SARS-CoV-2 involves host metabolic reprogramming that deregulates cellular redox 
homeostasis, affects mitochondrial function and its related bioenergetic pathways 
(146–148). Accordingly, these phytoceutical antiviral compounds could provide syner-
gistic or additive benefits with pharmaceutical drugs in immune modulation, 
anti-inflammation, and relieve oxidative stress in COVID-19 patients (149).

Conclusions

Antiviral drugs with proven efficacy are not yet available to prevent transmission or 
facilitate treatment of COVID-19. The ‘repurposing’ of approved antiviral drugs with 
adjuvant combination(s) of well characterized phytonutrients could be one of the rapid 
and safe strategies to combat the COVID-19 pandemic. Computational drug repur-
posing is a promising alternative that enables prioritization of existing compounds 
through rapid high through-put screening analyses (150). Virtual in silico processing 
protocols could meet the current challenge of antiviral drug discovery considering 
comparative testing of both pharmaceutical and phytoceutical bioactive molecules. 
Large virtual compound libraries could be filtered by different computational screening 
methods such as molecular docking, ligand-based similarity searches or 
pharmacophore-based screening, which reduces the number of bioactive molecules to 
a smaller set of potential candidates for clinical evaluation (151). Some predicted drugs 
and potential phytoceutical compounds that target viral proteins such as RdRp and 
pathological host pathways are currently undergoing human clinical trials (152).
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Natural compounds, especially plant-derived bioactives, have emerged as adjuvant 
interventional options to overcome the limitations of existing antiviral drugs against 
COVID-19 (149, 153). Several ongoing in silico studies have demonstrated the antiviral 

Table 1. Conserved motifs and residues in the SarS-CoV-2 rdrp enzyme and their potential inter-
actions with the phytonutrient nnai ligands. additional health attributes of specific dietary bioactives 
is also depicted.

phyto-nnai
rdrp Binding residues*  

(ΔG = kcal/mol)
additional Health attributes of plant 

Bioactives

Suramin n497/K500/r569/Q573 & K551/r553/r555/
r836 (eC50 = 0.26 to 0.43 µm)

prevents il-1 mediated host response, pGe-2 
synthesis, thymocyte proliferation, and 
il-6 production (38, 135*, 72*).

Silibinin D618/D623/D760/D761 & r555/V557/t680/
S682/n691 (-9.4 kcal/mol)

inhibits secretion of pro-inflammatory 
cytokines, such as tnf-α, il-6, activates 
nf-κB and  upregulates intracellular camp 
level (96, 136)*

theaflavin r553 (-9.1 kcal/mol) Suppresses lpS-induced iCam-1 and VCam-1 
expressions via blockage of nf-κB and 
JnK activation in intestinal epithelia  
(110, 137*).

epicatechin-3,5-di-o-gallate K545/D623/D425/n691/ S759/S682/S814 
(-14.7 kcal/mol)

potent anti-inflammatory, inhibits 
tnfα-induced activation of nf-κB and 
secretion of pro-inflammatory mediator 
il-8, (63)*.

epigallocatechin-3,5-d
i-o-gallate

S682/D623/r553/r55/ K545/i548/D760/S759 
(-9.2 kcal/mol)

inhibits leukocyte migration into endothelial 
cell monolayers and ameliorates chronic 
fatigue syndrome, (63)* 

epigallocatechin-3,4-d
i-o-gallate

r836/r555/S759/n691/ D623/S682/D452/r553/
K545 (-14.9 kcal/mol)

potent antioxidant that protects erythrocyte 
calcium-atpase and sodium/potassium- 
atpases against oxidative stress (63, 138)*.

Baicalein H133/n705 (-8.7 kcal/mol) prevents apoptosis and neuroprotective via 
inhibiting oxidative stress, protein conjugation,  
and inflammation (119, 139*, 113*).

Corilagin G616/D761/K798/W617/W800/ D618/S814/
e811/S549/C799/a550 (-8.9 kcal/mol)

Down-regulates pro-inflammatory mediators 
tnf-α, il-1β, il-6, no (inoS) and CoX-2 
by blocking nf-κB nuclear translocation 
(140)*. 

Hesperidin S759/D760/D761 & D618 (-9.5 kcal/mol) reduces oxidative stress via NADP-oxidase 
inhibition in the vasculature, ameliorates 
endothelial dysfunction/hypertension 
(123, 141*).

lycorine D623/n691/S759 (-6.2 kcal/mol) alleviates lpS-induced lung injury of 
inflammation and oxidative stress by 
blocking the HmGB1/tlrs/nf-κB pathway 
(38, 138*).

Justicidin a W104/i119/V126/i128/W170/f192/ f194/i203/
l226/V227 (-8.7 kcal/mol)

protects neuronal cell death by blocking 
hyperphosphorylation of tau and induces 
autophagy by regulating GSK-3β/ampK 
activity (133, 143)*.

10-methoxy-camptothecin V126/W170/V227 (-8.5 kcal/mol) regulates solute carrier transporters (SlCs), 
responsible for cellular influx of 
endogenous substrates and several 
clinically important drugs (133, 144)*.

ellagic acid G808/p809/H816/t817/y831 (-6.4 kcal/mol) reduces plasma alkaline phosphatase 
activity, calcium content, and hypertrophy 
in vascular tissues during hypertension, 
(134*).

Kaempferol D761/e811 (-6.2 kcal/mol) Scavenges roS and relieves oxidative stress 
related medical conditions that involve 
disturbed metabolism of redox metals 
such as copper (134, 145*).



JOURNAL OF DieTARy SUPPLeMeNTS 19

potential of natural compounds and these phytonutrients also have multifunctional effects 
such as anti-inflammatory, antiviral, antioxidant, cardioprotective, and exhibit potent 
therapeutic benefits in the treatment of COVID-19 associated clinical manifestations.

Chemical modification of natural bioactive compounds may be required to increase 
the potency of their antiviral activity to levels suitable for therapeutic application. For 
the drug discovery process, understanding the effects of redox sensor mechanisms, espe-
cially proton transfer systems (i.e. H-bonds) that modulate the structural conformity of 
phytonutrients could boost the development of effective antiviral RdRp interventions (145).
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